Category Archives: lectures

Learning about exoplanets with AoT Seattle

Often when an exoplanet is discovered the first question asked by the mainstream media is whether the new planet is “Earth-like.” In truth we know little about these far-away planets other than their mass or size, and whether they orbit within the habitable zone of their host star. Scientists are using PCA and SAMURAI to learn more about exoplanets, and LUVOIR may ultimately help us get a much better look at these distant worlds.

Tovar

Lupita Tovar spoke about mapping exoplanets at Astronomy on Tap Seattle August 23, 2017. (Photo: Greg Scheiderer)

Lupita Tovar is a first-year Ph.D. student in astronomy and astrobiology at the University of Washington, where she works at the Virtual Planetary Laboratory. She gave a talk titled “Mapping New Worlds” at the most recent Astronomy on Tap Seattle event at Peddler Brewing Company in Ballard. Tovar is helping develop the parameters for LUVOIR, which stands for Large UltraViolet/Optical/InfraRed Surveyor. It is one of four projects being considered by NASA as part of the 2020 decadal survey, which will help pick the agency’s next big project.

Big is the operative word for LUVOIR. Astronomers love aperture for their telescopes, and LUVOIR would dwarf any space telescope to date. The Hubble Space Telescope has a 2.4-meter mirror, and the James Webb Space Telescope, scheduled for launch next year, will be 6.5 meters. LUVOIR would nearly double that; Tovar said it is proposed right now to have a 12-meter mirror. It would also be equipped with a coronagraph which would block the light of a host star. Much as Venus and Mars were visible in the daytime during last month’s total solar eclipse, blocking starlight would allow us to see much dimmer objects nearby.

LUVOIR

Sketch of LUVOIR by NASA/Goddard

“The coronagraph will allow us to see those close-in planets, like Venus, and allow us to study those planets,” Tovar said. LUVOIR would be a powerful instrument. It could see Venus, Earth, and Jupiter from a distance of ten parsecs, or about 33 light years.

Fortunately, astronomers don’t have to wait for LUVOIR to make progress on mapping exoplanets. Tovar said that today they’re using PCA—Principal Component Analysis—to get a better idea about an exoplanet’s surface.

“We use PCA to extract how many components are there,” Tovar explained. “Is it just one, solid icy body? Are there two different types of surfaces sitting on that planet? Are there three? Are there more? PCA allows us to extract that information.”

Call in the SAMURAI

Once they know how many surface types there are, astronomers can then use SAMURAI—Surface Albedo Mapping Using RotAtional Inversion—to figure out just what those surfaces are. Tovar said it’s like looking at a beach ball as it is batted around. As the ball spins, different colors face the observer. SAMURAI uses algorithms to determine the composition of each surface type. For example, land reflects more light than ocean does, but an ocean’s reflection will spike when it’s near the edge of the exoplanet, from our view, because of the glint of light from the host star.

LUVOIR is just a glint in the eyes of astronomers now, but it along with PCA and SAMURAI could give us a much better idea about the makeup of exoplanets.

“Combined together, all of these three components will help you create a map,” Tovar said.

Is Tatooine out there?

Star Wars fans often speculate about the existence of planets like Luke Skywalker’s home world Tatooine, which has two suns. So far we know of a dozen exoplanets in orbit around binary star systems. Diana Windemuth, also a Ph.D. student in astronomy and astrobiology at UW, studies these sorts of systems and gave a talk titled, “By the Light of Two Suns” at Astronomy on Tap Seattle.

Windemuth

Diana Windemuth discussed exoplanets orbiting binary star systems at AoT Seattle. (Photo: Greg Scheiderer)

“Our Sun is a bit of a weirdo in that it does not have a companion,” Windemuth said, explaining that about half of stars like the Sun have one. The more massive a primary star is, the more likely it is to have a companion, she said. Further, there are two types of stable orbits a planet in a binary star system can have. In an S-type orbit the planet will go around just one of the stars; it will be either a circumprimary or circumsecondary orbit. In the P-type, the exoplanet orbits both stars.

“A circumbinary planet goes around in a wider orbit around an inner, closer-in binary,” Windemuth explained. She said it is harder to find these sorts of systems using Kepler’s transit method because throwing in a third body complicates things. Kepler measures the overall light from a system, and the amount of light we see changes not only when the planet transits, but when the stars eclipse each other.

“These are called eclipsing binaries because they go around one another,” Windemuth said. Exoplanets are confirmed when dips in the light during transits happen at regular intervals. Usually a computer picks that out of the data, but it doesn’t work so well on binary systems.

It’s a trick!

“It turns out its difficult to train a computer to do that because of what we call the geometric effect,” Windemuth said. Because the stars move with respect to each other in binary systems, the period of transits can appear to vary because of differing distances the light travels to reach us. Gravitational interactions in the system can also create wobble and change the perceived period of transits.

“Even though the period of your planet might be the same, the transits will occur at different times,” Windemuth noted.

It’s probably because of these challenges that we’ve only discovered a handful of circumbinary planets so far, Windemuth said, and none of them are candidates to be the real-life Tatooine.

“No terrestrial circumbinary planets have been found yet,” she said. That could be because they’re too hard to find, or maybe planets with short periods are destroyed when they orbit too close to the binary stars.

“It’s probably because our detection algorithms are not good enough yet,” Windemuth concluded.

Astronomy on Tap Seattle is organized by graduate students in astronomy at the University of Washington. The next gathering is scheduled for September 27 at Peddler Brewing Company in Ballard, and the topic will be polarimetry. We don’t know what that is, either, but are looking forward to finding out!

Share

Making beer and weighing stars

Science these days is often all about interdisciplinary work. It’s seldom just biology or just geology, and so it wasn’t surprising that the most recent gathering of Astronomy on Tap Seattle had a heavy dose of chemistry. It was for a good cause, though, as Trevor Dorn-Wallenstein, a second-year graduate student in the University of Washington Astronomy Department, gave a talk titled “An Unbeerlievable Tale” explaining how the universe made us beer, and a glass to put it into. The event happened July 26 at Peddler Brewing Company in Ballard.

It turns out you only need five elements for beer:

  • hydrogen
  • nitrogen
  • carbon
  • oxygen
  • phosphorous
Trevor Dorn-Wallenstein

Trevor Dorn-Wallenstein talks about celestial beermaking at Astronomy on Tap Seattle July 26, 2017 at Peddler Brewing Company in Ballard. (Photo: Greg Scheiderer)

We had the hydrogen about a millionth of a second after the Big Bang.

“It’s not until 10 seconds after the big bang that we can smoosh a proton and a neutron together and have deuterium and have that deuterium last,” Dorn-Wallenstein said. “Once we have that deuterium though, we’re off to the races.”

If you add a proton to the deuterium you make helium 3, or add a neutron and make tritium. Add the missing nucleon to either and you’ve got helium 4. It’s not in beer, but we’ll need it later. Much later. We have to wait about 1.5 million years, until stars start to form and start fusing new elements. Stars about two times the mass of our Sun can fuse hydrogen into helium, then toward the end of their life cylcles do what Dorn-Wallenstein called the “triple alpha reaction.” They smash three helium atoms into carbon, and add another helium nucleus to make oxygen. When the star reaches its red giant phase these elements blow off with the stellar wind.

“We’ve pollulted the interstellar medium with hydrogen, with carbon, with oxygen,” Dorn-Wallenstein said, “three of the things we need to make beer.”

Higher-mass stars, say ten times the mass of the Sun, can fuse things such as neon, titanium, silicon, sulfur, magnesium, aluminum, and calcium.

“It can unlock all of these additional stages of nuclear fusion,” Dorn-Wallenstein said.

Nickel beer night

The process leaves behind a stellar core of nickel 56 which decays into iron 56.

“Iron 56 is the end of the line for a star,” Dorn-Wallenstein explained. “There is no physical way to get energy out of an iron 56 nucleus. You cant fuse it with something else, you can’t fission it and turn it into two more things, you get nothing out of this nucleus. That’s a problem for a star.”

The outer part of the star collapses onto the core and explodes into supernova, blasting all of the elements it has made out into the interstellar medium.

“The environment around this supernova explosion is so energetic that you can make pretty much anything you want,” Dorn-Wallenstein said. “Pick any element in the periodic table that’s heavier than iron—it’s probably made in a supernova.”

Nitrogen is conspicuously missing from the list, and it is kind of hard to make. Dorn-Wallenstein said we get a little bit, but not enough, from supernovae or at the end of a smaller star’s life.

“The only way to produce enough nitrogen is via this thing called the carbon-nitrogen-oxygen, or CNO, cycle,” he said, explaining that this is how stars produce helium from hydrogen. Since nitrogen takes longer, it builds up in stars. In the universe at large there are about four or five carbon atoms for every nitrogen atom, but in a star that’s doing the CNO cycle there are more than a hundred times more nitrogen atoms than carbon.

“Via this process of converting hydrogen into helium, we actually make nitrogen as a by-product,” Dorn-Wallenstein said.

The beer glass

We’ve got the ingredients for beer. Where do we put it?

“It turns out the most complicated thing that goes into a beer is the glass itself,” Dorn-Wallenstein said, noting that your mug is mostly silicon dioxide, with a bit of sodium oxide, aluminum oxide, calcium oxide, and trace amounts of potassium, magnesium, iron, titanium, and sulfur. All of that stuff came out of a supernovae.

We have all we need for beer. Now we just need a planet to form, simple life forms like yeast to emerge, wheat and hops to grow, and someone to mix it all into a barrel and let it sit for a while.

“Look at that; we’ve made beer,” Dorn-Wallenstein concluded.

Weighing stars

The second talk of the evening at Astronomy on Tap Seattle was given by Dr. Meredith Rawls, who spoke about “Weighing Stars with Starquakes.” Rawls employs asteroseismology—your word of the day!—to figure out the mass of stars.

Rawls

Dr. Meredith Rawls discussed a new method for determining the masses of stars at Astronomy on Tap Seattle. (Photo: Greg Scheiderer)

Rawls noted that one way to calculate the mass of a star is to observe binary systems. We can measure the blockage of light as the stars orbit each other, and the Doppler shift that occurs when they do. Combine those two measurements and you get a reliable measure of the stars’ masses.

The drawbacks, according to Rawls, are that not all stars are part of binary systems, and that this method is slow and uses a lot of limited telescope time. Rawls gets around this by using asteroseismology, measuring the oscillations, or starquakes, that occur in a star’s interior. They actually ring like a bell, though you can’t hear it because space is a vacuum, and the frequency is too low in any case. Like a bell, the more massive the star, the lower the frequency of the oscillation. You can’t see the oscillations because they’re inside the star, but they change the star’s brightness. This is something that can be observed, and astronomers chart brightness changes against the frequencies of the starquakes and see how they line up with other properties of the star.

“You fit a bunch of curves to a bunch of wiggles and you try to convince yourself you’re not making it up,” Rawls quipped. The method can give clues about a star’s surface gravity, density, and temperature, and with gravity and density you can calculate mass.

Does it really work?

Rawls said they like to study red giant stars for a couple of reasons: that’s the eventual state of our Sun, and red giants brighter and easier to see. After figuring masses of many red giants with asteroseismology, they went back and calculated them again using the binary method. Then they compared the two.

“Oh, crap!” was Rawls’s reaction upon seeing how they matched up. “It’s not one-to-one. I broke science!”

In fact, the masses calculated through asteroseismology differed from those returned by the binary method by about 16 percent, on average. It turns out that big, red giant stars are not quite so simply just huge versions of our Sun.

“They have their own weird convection stuff going on,” Rawls explained. “There’s different stuff happening in different layers of the star that isn’t quite the same as what happens inside our Sun, and it’s just complicated enough that you can’t compare them one to one, even though it would be super handy if you could.”

What do they do to reconcile the differences between the two methods?

“We have to apply empirical corrections in order to get accurate masses,” Rawls explained. In other words, “We have to fudge it a little bit! But it’s consistent. It’s fine, it’s fine. Totally works. Not a problem. Don’t worry about it,” she laughed, adding that asteroseismology works just great for smaller stars like the Sun.

“It’s actually really useful, even though sometimes it doesn’t always work perfectly, because you can measure a lot of stars’ masses really fast,” she concluded.

Astronomy on Tap Seattle is organized by graduate students in astronomy from the University of Washington.


Some photos from recent Astronomy on Tap gatherings, and videos of the July talks:

Share

Solar eclipses and the stature of science

A total solar eclipse that crossed the American West in 1878 helped ignite a great boom in science in the United States. David Baron is hoping that, in an era in which people have to march in the streets in support of science, the total solar eclipse that will cross the nation next month will be similarly inspirational. Baron, a former science editor for National Public Radio, is the author of American Eclipse: A Nation’s Epic Race to Catch the Shadow of the Moon and Win the Glory of the World (Liveright, 2017). He spoke about the book last week at the Pacific Science Center, part of the center’s Science in the City lecture series.

Baron saw his first total solar eclipse from Aruba in 1998.

“I was just dumbfounded,” he said at the sight of the eclipse, which revealed stars in the daytime and Jupiter, Mercury, and Venus. “There, among the planets was this thing; this glorious, bewildering thing. It looked liked a wreath woven from silvery thread and it just hung out there in space, shimmering.”

It was the Sun’s corona, and Baron said the photos you’ve seen don’t do it justice. Soon, the eclipse was over.

“The world returned to normal, but I had changed,” Baron said. “That’s how I became an eclipse chaser.”

He said he decided that day, on the beach in Aruba, that he wanted to write a book about solar eclipses. He also figured 2017 would be the year to release it, with public interest in solar eclipses likely to be at its apex because of this year’s eclipse. So his book has been 19 years in the making. He said the work started in earnest about seven years ago, when he went researching for interesting eclipse stories to tell.

The American eclipse of 1878

Battle Lake markerBaron came upon a historical marker next to Battle Lake in the Wyoming Sierras, which claims that Thomas Edison came up with the idea to use bamboo as a filament for an electric light bulb while fishing at the lake in 1878. Baron found no evidence that this was actually true, but Edison was involved in eclipse watching in Wyoming that summer, for the total solar eclipse of July 29, 1878. The eclipse ran from Montana south down across the American frontier through Texas. At the time, Baron noted, Europeans were the clear leaders in eclipse science.

“Here was America’s chance to shine—or an opportunity to slip up and embarrass ourselves—but if all went well we would show the rest of the world what we were capable of as a scientific nation,” Baron said, “and so the eclipse was a big, national undertaking.” The eclipse and the expeditions to observe it received in-depth coverage in the newspapers.

Edison was among a group that went to Rawlins, Wyoming to view the eclipse. The group included Norman Lockyer, who had discovered helium on the Sun and founded the journal Nature; and James Craig Watson, an astronomer at the University of Michigan, who was in search of the hypothetical planet Vulcan that could explain orbital anomalies of Mercury.

David Baron

Author David Baron spoke about his book American Eclipse on July 19, 2017 at the Pacific Science Center. (Photo: Greg Scheiderer)

Also out west was Maria Mitchell, professor and director of the Vassar College Observatory, who brought a group of Vassar students to Denver to show that women could do science, too. For Edison’s part, he was anxious to test an invention he called the tasimeter, intended to detect minuscule changes in temperature. Astronomers were interested in the device, which might reveal if the Sun’s corona gave off heat.

“These three main characters of mine had a lot on the line,” Baron said, and on the day of the eclipse they declared great success and the press was highly positive, though neither Edison, Watson, nor Mitchell really achieved their set goals.

“Maria Mitchell did help open the doors of science and higher education to women, but it’s not like male scientists suddenly embraced their female counterparts,” Baron noted. “It was the beginning of a long, hard, continuing struggle.”

Watson didn’t find Vulcan, of course; the precession of Mercury’s orbit was explained later through Einstein’s general relativity. Edison’s tasimeter never lived up to the hype. He did head home and start work on the light bulb, though not in the way the Historical Landmark Commission of Wyoming would have you believe.

“The eclipse of 1878 did not illuminate America in the way the historical marker claims,” Baron said. “However it did enlighten America, helping to push this upstart nation toward what it soon would become—the undeniable global superpower in science, a country that would, in this intellectual realm, eclipse the world.”

Learning from history

Baron sees an interesting parallel with next month’s total solar eclipse.

“Once again the Moon’s shadow will visit us at an interesting time in our intellectual development,” he noted. “Today the issue isn’t whether America can rise up and take on the world in science, the question is whether America can maintain its global lead.”

It will undoubtedly be the most widely viewed total solar eclipse in human history. We’ll see whether it has the power to change hearts, minds, and the course of history.


You can purchase American Eclipse though the link above or by clicking the image of the book cover. Purchases made through links on Seattle Astronomy support our ability to bring you interesting astronomy stories. Thank you!

Share

Astronomy on Tap plus Nordgren eclipse talk highlight week’s events

Another episode of Astronomy on Tap Seattle is on the calendar for this week, and astronomer, artist, and author Tyler Nordgren will visit the Museum of Flight to talk about his latest book about total solar eclipses.

The whole premise of Astronomy on Tap is that astronomy is even better with beer. This month we go even one step further, learning how beer isn’t possible without science as we go “From Stars to Beer.” The gathering will be at 8 p.m. Wednesday, July 26 at Peddler Brewing Company in Ballard.

AoT co-host Trevor Dorn-Wallenstein will give a talk titled, “An Unbeerlievable Tale: How atoms come together in stars to make the most glorious structure in the low-redshift universe: beer.” That may be the longest subtitle ever, too! Dr. Meredith Rawls will discuss her research about “Weighing Stars with Starquakes” with a fantastic technique called asteroseismology.

Astronomy on Tap Seattle is organized by graduate students in astronomy at the University of Washington. It’s free, but buy beer. Bring your own chair to create premium front-row seating in Peddler’s outdoor beer garden.

Nordgren on Eclipses

We’ve covered a number of talks by Tyler Nordgren over the last several years. Nordgren, astronomy professor at the University of Redlands, is also an author, artist, dark-sky advocate, and entertaining presenter. He’ll be at the Museum of Flight at 2 p.m. Saturday, July 29 to talk about his latest book, Sun Moon Earth: The History of Solar Eclipses (Basic Books, 2016).

The book is part travelogue covering some of Nordgren’s recent eclipse-chasing adventures, part history of eclipses and the myths and science surrounding them, and part primer for the total solar eclipse that will be visible from the United States next month. It’s a marvelous volume and we recommend it highly.

Nordgren spoke about the book at Town Hall Seattle back in January. You can read our re-cap of that talk and our review of the book. Nordgren will sign copies of Sun Moon Earth following his talk Saturday. Grab the book by clicking the book cover or link above; it helps Seattle Astronomy exist!

Star parties galore

The Seattle Astronomical Society will be involved in three star parties this weekend. The Covington Community Park star party will be held at 10 p.m. Friday, July 28 in said park. Volunteers from the Boeing and Tacoma societies also help out with this event.

SAS will hold its free monthly public star parties at 9 p.m. Saturday, July 29 at two locations: Green Lake in Seattle and Paramount Park in Shoreline. Bad weather cancels these star parties, so watch the SAS website or social media for updates. But hey, we’re on a good-weather roll!

Jazz Under the Stars

Jazz Under the StarsThe Tacoma Astronomical Society and Pacific Lutheran University physics department will lead stargazing at PLU’s Keck Observatory on Thursday, July 27 following the PLU Jazz Under the Stars concert. The artist for the free concert, which begins at 7 p.m. in the outdoor amphitheater of the Mary Baker Russell Music Center at PLU, is Anjali Natarajan, a Brazilian jazz vocalist out of Olympia. If the weather is bad the stargazing may be off, but the concert will just move indoors.

Jazz Under the Stars concerts will also be held on the next two Thursdays, August 3 and 10.


 

Share

CSI Universe: Unraveling the mysteries of Tabby’s Star and supernovae

The universe is full of mysteries; that’s one of the reasons that astronomy is so interesting! We dug into a couple of puzzling phenomena at the most recent gathering of Astronomy on Tap Seattle at Peddler Brewing Company in Ballard. The session was dubbed “CSI: Universe,” and Brett Morris, one of the co-hosts of Astronomy on Tap Seattle and a Ph.D. candidate at the University of Washington, gave a talk about the star KIC 8462852, more commonly called Tabetha Boyajian’s star, thank goodness. His talk was titled, “The Weirdest Star Gets Weirder.”

You helped

Citizen scientists were the first to notice that there was something odd about Tabby’s Star. The Kepler Space Telescope was searching for exoplanets by watching for slight but regular dips in a stars brightness, a possible indication of a planet in orbit around a distant star. Morris noted that it can be difficult to write a computer algorithm to filter out noise in the data, so they enlisted the help of the public through the website PlanetHunters.org.

Brett Morris

Brett Morris (Photo: Greg Scheiderer)

“What you can do on this website is help scientists look for things that are weird,” Morris said. People identify objects that don’t look right, then professional astronomers check them out. “Through this process they found a whole bunch of stars that misbehave.”

One of them was Boyajian’s.

“If we look at its colors, if we look at its spectrum, it behaves like all the other F-stars,” Morris said, “and so we were a little bit puzzled when we started looking at data.”

There were dips in light from Tabby’s Star, all right. There were smaller dips early in the mission that never really matched up. Then in March 2011 there was a huge dip of 15 percent of the star’s light, and it lasted for days, not hours as most transits do. Then in February 2013 there was an even bigger reduction in brightness of 20 percent. Nobody has come up with a plausible explanation for this.

“Whatever this is, this thing’s big,” Morris said.

No easy answer

An astounding array of possible explanations have been thrown out there. Examples include an object like Saturn with rings that could cause variations in the light curve, a passing comet, debris from a huge planetary impact like the one thought to have formed our Moon, and Tabby’s Star’s indigestion from having just swallowed a whole planet. The one in vogue at present is that a family of 10 to 20 comets, all giving off material, are creating these odd light curves. Morris doesn’t quite buy this one, either.

“The more bodies that you imagine being there, the easier it is to fit a light curve,” he said. “If you just keep adding new parameters into your model, eventually it will fit.”

“If you invoke wierdly shaped objects, you can fit it perfectly,” Morris added. “If you invoke the kinds of objects that we expect are most likely, it’s a lot harder. We really don’t know what this star is doing.”

Some have wondered if something between us and Tabby’s Star, maybe interstellar gas or dust, caused the strange light curves. Morris himself investigated this one. Back in May he got a Tweet—he said this is mostly how astronomers communicate these days!—noting that Tabby’s Star’s brightness was changing. He used the Apache Point Observatory to look for signs of absorption from interstellar gas or dust. But the spectra didn’t change even though the star was changing.

“We’re slowly ruling things out,” Morris said. “It’s not something in our solar system, it’s not something between us and the star; it’s got to be something near the star, but we don’t know what near the star could be doing this.”

As for wild speculation that the strange light curves could be caused by a Dyson Sphere or other “alien megastructure”:

“Extraordinary claims require extraordinary evidence, and I do not have any evidence to suggest that we can make a claim as extraordinary as that,” Morris said. He and a team of undergraduates at the University of Washington continue to work on the puzzle.

Coroner for the Stars

The second talk of CSI: Universe came from Prof. Melissa Graham of the UW, who does work on supernovae. These mark the death of a star, and Graham’s job is to figure out whodunnit.

Melissa Graham

Melissa Graham (Photo: Greg Scheiderer)

Graham pointed out that a star is considered alive if it’s in hydrostatic equilibrium; that is, when atomic fusion in the star’s core supports the star by counteracting gravity. Sometimes the death of a star is from natural causes. A typical star will fuse hydrogen and helium into carbon, then gradually fuses neon, oxygen, and heavier elements until eventually a core of iron forms. Graham said this means trouble, because fusing iron into something heavier is not exothermic; it doesn’t release energy.

“If you end up with a core of iron, your hydrostatic equilibrium suffers because you are losing out on that fusion in the core,” she said. “The core collapses because it can’t support itself anymore, the outer layers fall onto the inner layers, and you end up with a supernova explosion.”

Material blows away and leaves neutron star behind.

“That’s death by natural causes,” Graham said.

Type 1a supernovae are more interesting to stellar criminologists. These involve a white dwarf star, which is the remnant of a smaller star that doesn’t have enough mass to fuse carbon and oxygen into anything heavier.

“The carbon and oxygen core shrinks under its own self-gravity, and the outer layers are lost, which causes a really pretty planetary nebula,” Graham said. “The star is now supported by electron degeneracy pressure.”

This means the star isn’t alive because it’s not fusing elements.

“It’s more of a zombie star,” Graham said. “It’s died once and continues to live.”

The usual suspects

It’s a suspicious death when you see one of these explode. Graham rounded up the usual suspects: It could be a binary companion, such as a red giant or a sun-like star or another white dwarf. Sometimes it could be a pair of white dwarfs with a third companion star. A type 1a supernova also might from from a white dwarf’s impact with a primordial black hole or comet.

One way to figure this out is to simply look at the scene of the crime.

“Once this white dwarf star explodes, the other companion star would still be there,” Graham said. A companion would heat up and get brighter, so it might be detectable. Interstellar dust and gas may also light up from the energy of a supernova. Looking back at the scene later might detect such material that is at significant distance from the event. Graham is using the Hubble Space Telescope to check to find out if this is happening. She’s also looking forward to the completion of the Large Synoptic Survey Telescope, which is expected to find some ten million supernovae over its 10-year mission. With so many new examples we will, “really start to understand how these carbon-oxygen white dwarfs die,” Graham said.

More information:

Morris’s talk on YouTube

Ted Talk by Tabetha Boyajian

 

Share

Breaking barriers in the early ’60s space program

NASA played a key role in the integration of the workforce of the south during the early 1960s, and a recent book tells the tale of how that came about and of the African Americans who were key participants in that movement. We Could Not Fail: The First African-Americans in the Space Program (University of Texas Press, 2015) was written by Richard Paul and Steven Moss. Moss spoke about the story last week at the Museum of Flight.

It wasn’t altruism that drove NASA. After President John F. Kennedy made his man-to-the-Moon speech in May of 1962, the agency and its contractors suddenly needed about a quarter of a million engineers and rocket scientists to achieve that goal. They couldn’t afford to discriminate. In fact, Moss pointed out that Vice President Lyndon Johnson made a speech in Seattle in 1962 about NASA recruiting the best talent regardless of race. JFK knew getting the Civil Rights Act passed would not be a speedy process, but he made an executive order to address discrimination in federal employment. It was essentially the first mention of equal employment opportunity.

Policy doesn’t always make it to the streets immediately. Moss said that Houston Power and Light actually turned off the electricity to the Pelican Island Destroyer Base near Galveston, Texas because the utility didn’t approve of the nondiscrimination order. LBJ leaned on the local congressman, noting that if a naval base couldn’t be powered, Houston might not fare well in its efforts to land the Manned Spaceflight Center.

“The Navy got its power very quickly, and in September Houston got its space center,” Moss said.

NASA gets on board

Moss and Hawks

Author Steven Moss, left, and Harvey Hawks, a Museum of Flight docent, after Moss’s talk June 14 about the book We Could Not Fail. Hawks said during the Q&A period that, though he didn’t try to work for NASA, he faced similar challenges after graduating with an aeronautical engineering degree in 1963. (Photo: Greg Scheiderer)

At the start of this process in 1962 NASA was near the bottom of federal agencies in the hiring of African Americans. That began to change quickly, but again it took political pressure. In May of 1963 Attorney General Robert Kennedy discovered that, despite a large African American population in Birmingham, Alabama, only 15 African Americans held jobs with the federal government there. Kennedy leaned on Johnson, who leaned on NASA administrator James Webb, who leaned on Wernher von Braun, who was head of the Marshall Spaceflight Center in Huntsville, Alabama.

“Over the next six weeks NASA does more to engage in the hiring of African Americans than it has at any other time in its history,” Moss noted. In October of 1964—just before the presidential election—Webb threatened to move management personnel out of Huntsville over the Alabama’s discriminatory policies.

“Qualified people—blacks and whites—refused to work at Huntsville,” Moss said. “They refused to go to Alabama because of its laws, because of its violence—not just its reputation, but the very real violence against people.”

They also had trouble keeping people there.

“The turn-around at Marshall was pretty high compared to some other places, because people just did not want to be there once they saw it,” Moss said.

Von Braun became something of a “point man” on civil rights, according to Moss. He made a visit to Miles College, a historically black institution, in November of 1964 for the opening of a new science building.

“Von Braun goes there and it is a very bold statement,” Moss said, “that (NASA) is going to stand up for civil rights and for the African American community.”

The other great stand happened at Marshall. Governor George Wallace was gearing up for a presidential run, and organized a tour of the facility in Huntsville, bringing 200 Alabama state legislators with him. Von Braun made sure to be there to speak against Wallace’s segregationist policies.

“He tells them that Alabama’s hope for industrial growth is jeopardized by its racial policies,” Moss said, “and he tells them that attracting and keeping the best people would succeed if Alabama offers the same opportunities as other states.”

“The only federal official that could stand toe to toe with George Wallace was Wernher von Braun,” Moss said.

Moss noted that von Braun likely didn’t do this out of the goodness of his heart. Through co-author Paul’s conversations with Mike Neufeld, a historian at the Smithsonian Air and Space Museum and specialist on von Braun, and their own research, they concluded that von Braun was completely driven by launching rockets, and would do what it took to keep that going.

The pioneers

Officialdom was slow to conquer Jim Crow and the Klan, which were still strong forces in the south. Much of the book is devoted to profiles of some of the African American pioneers who helped make it happen despite the barriers. Moss highlighted several of them during his talk.

Montgomery

Julius Montgomery (Photo: FIT)

Julius Montgomery was the first African American hired as a professional at Cape Canaveral. He was the first African American to sign up for classes at the Florida Institute of Technology, which at the time was known as Brevard Engineering College. He played a key role in integrating the college. Today FIT offers the Julius Montgomery Pioneer Award to African American students who make outstanding contributions to the community.

Clyde Foster promoted compliance with equal employment opportunity at NASA. He helped Alabama A&M in Huntsville start a computer science program. A great many of the African Americans who worked at NASA began their careers at A&M. Foster also convinced NASA to do advanced training in management there—before this it was nearly impossible for African Americans to get such training and advance their careers, because the sessions were held at segregated institutions or hotels.

Crossley

Frank Crossley. (Photo: We Could Not Fail on Facebook)

Frank Crossley was one of the first black Navy officers, and was the first African American to earn a Ph.D. in metallurgical engineering.

“Although he was never a NASA employee, the work he did with metals and with alloys is significant for NASA’s success,” Moss said.

Charlie Smoot was hired by NASA as a recruiter. As an African American he could visit colleges and bring real information to prospective students about what it was like to be black and work for NASA. He organized presidents of black colleges and universities to help build a pipeline of qualified students.

George Carruthers is an astronomer who built the first observatory ever deployed on another celestial body, a UV telescope used on the Moon during the Apollo 16 mission.

Morgan Watson was one of NASAs first black engineers. Moss played a sound clip of an interview in which Watson gave what turned out to be the title of the book.

“We felt that the image of black people was riding on us as professionals,” Watson said. “We could not fail; we had go forward and do our best.”

“The pressure to succeed and the fear of failing was understood,” Moss noted.

In another clip Watson said that the space program changed the south by integrating African Americans into the workplace.

“By showing that there were black professionals that could do that,” he said, “it helped to break the walls down; it helped change people’s perception of black people in the south.”

As with the recent book Hidden Figures, Moss noted that the stories of the people he and Paul profile are not well known. In fact, they ran across cases in which the people’s own children or grandchildren had no idea of their accomplishments. Moss also said that, sadly, many of the African American NASA employees of the era are aging and in poor health, and were unable to participate in interviews.

We Could Not Fail promises to be a good read for the space history, but even more so for the stories of the courageous people who made that history.


You can purchase We Could Not Fail through the link above or by clicking the book cover image. Purchases through links on Seattle Astronomy help support our efforts to bring you great space and astronomy stories. We thank you!

Share

Plan your space vacation today!

There’s a place in our solar system where you could be like Superman! You could leap over the tallest building in the world in a single bound if it were built on the Martian moon Phobos. Burj Khalifa in Dubai rises to 2,722 feet, and you could clear it in one hop because gravity is not very strong on Phobos. This and other fascinating facts about the solar system are revealed in the new book Vacation Guide to the Solar System: Science for the Savvy Space Traveler (Penguin Books, 2017). Authors Olivia Koski and Jana Grcevich spoke recently at Town Hall Seattle.

Koski and Grcevich

Olivia Koski (left) and Jana Grcevich with their book Vacation Guide to the Solar System and their snazzy, official Intergalactic Travel Agent hats. (Photo: Greg Scheiderer)

The book sprung out of the work of an organization called Guerilla Science, which connects the public with science in unique ways. Koski, who is head of US operations for Guerilla Science, describes it as “an organization that believes that science is a tool of empowerment that belongs to everyone.” It was founded by graduate students in England, and Koski helped bring it to the US.

One of Guerilla Science’s projects is an Intergalactic Travel Bureau, which Koski calls a “pop-up agency where anybody can come and plan their vacation.” Five years ago she recruited Grcevich to be one of the bureau’s agents.

“I was procrastinating in writing my Ph.D. thesis,” she joked.

They’ve planned zillions of space vacations at live events and pop-up bureaus. The problem was that when people visited, they could typically squeeze in discussion about only a couple of possible destinations in any one sitting.

“We wanted to give them something that they could take away,” Koski said. “That’s how the book came about; we wanted to give them something that gave them the whole suite of options.”

Space vacations and reality

The authors say space vacations are not feasible just yet, but argue the concept isn’t so far-fetched.

“Assuming we don’t destroy ourselves first, humans will go to the places we describe in this book someday, almost without question,” Grcevich said. “With the right resources, and most important the will, we can travel to distant worlds.”

Thus from Vacation Guide to the Solar System Grcevich and Koski offered a bucket list of their top ten places to visit and things to do in the solar system:

  • Moon hop Jupiter (It has 67 of them)
  • Jump over the world’s tallest building on Phobos
  • Sleep in microgravity
  • Marvel at the geysers of Enceladus
  • Float in the skies of Venus
  • Meditate over Saturn’s hexagon
  • See a Martian sunset (They’re blue!)
  • Skydive into Jupiter
  • Ski the pink mountains of Pluto
  • Fly on Titan

The last would be Grcevich’s top choice.

“If I could go anywhere on vacation, I would go to Titan,” she said. The moon of Saturn has a thick atmosphere and low gravity, so people could fly under their own power using winged suits. Titan also has methane lakes and sand dunes, so it would be like a beach vacation (except it’s 300° below zero Fahrenheit.) “It would be fascinating to visit,” Grcevich added.

There were a great many kids at the talk, at least one of them a skeptic, a little girl who in the Q&A section asked, “Can you actually do any of those things?”

Koski said they get that question a lot. While it can’t happen right now, she noted that, a century ago, folks thought a trip to Mars would take 46 years. Now it’s six months.

“It’s pretty incredible to think about how much technology has changed in 100 years,” she said. Who knows what’s next?

“We’re very hopeful that we’ll be able to go on vacation to Neptune soon,” Koski added.

Go to the Moon today!

Since we can’t go now, they’ve created the next best thing: the Intergalactic Travel Bureau has built a free virtual reality app so you can enjoy a space vacation anyway.

“This is an app that turns your smart phone into a rocket ship,” Koski said. It features a virtual trip to the Moon, and vacations to Mars and Europa are in the works.

“We believe that space vacations are something that should be accessible to everyone, not just the people who can afford the ticket price that Elon Musk is charging to go to the Moon,” Koski added.

We recommend Vacation Guide to the Solar System enthusiastically. It’s a handsome volume with great illustrations by Steve Thomas, and it’s packed with interesting stuff about our solar system. The guide is a great way for kids and adults to learn the latest about what’s out there.


You can purchase Vacation Guide to the Solar System through the link above or by clicking the book cover image. Purchases through links on Seattle Astronomy help support our efforts to bring you great space and astronomy stories. We thank you!

Share