Tag Archives: Trevor Dorn-Wallenstein

Celebrating three years of Astronomy on Tap Seattle

Astronomy on Tap Seattle observed its third anniversary last month, and celebrated by breaking format, with updates on talks from the past year and some new tidbits of information.

One of the fun new items was a story by Dr. James Davenport about how he helped convince NASA to use the Kepler space telescope to take a selfie of Earth.

“This is a personal story,” Davenport explained. “This is a story about an image that we asked NASA to take, and they were kind enough to take it.”

It took more than a year of cajoling, using the usual bureaucratic channels and also social media campaigns to get the shot.

Selfie from space

Selfie from space: Earth as observed by Kepler in December. (Image: NASA)

“We guilted them into taking this picture that we wanted for no other value than just to have this amazing image,” Davenport said. He noted that NASA has a long tradition of taking photos of the home planet, starting with the “Earthrise” photo from Apollo 8 and going through the “Pale Blue Dot” image from Voyager and the more recent pic of Earth from Cassini at Saturn.

The Kepler telescope usually points away from Earth, but sometimes NASA moves the aim to look at a different part of the sky, and that’s when Earth can move through the scope’s field of view. This happened on December 10, 2017, and that’s when Kepler got this shot. Now, Kepler usually looks a dim objects that are far away—a typical exposure is about 30 minutes. This isn’t the best setup for taking a photo of Earth from about 94 million miles.

“We expected it to look like a bright mess,” Davenport said. “We were not disappointed.”

It’s a personal story for Davenport because he was doing an entirely different thesis project for his Ph.D. program when Kepler came on line. He was so excited about the hunt for exoplanets that he ditched his other thesis and started working with Kepler.

“It represented a huge turning point in my career,” he said.

Polarimetry

Back in September Kim Bott gave a talk about how she and other astronomers are using polarimetry to try to figure out if exoplanets are habitable or inhabited. Since then she’s done some actual modeling of Venus at various phases to see if polarimetry can tell us what we need to know.

The short answer appears to be no, at least for right now. The instruments simply aren’t senstive enough to detect the changes in light wiggle that might reveal a variety of indicators.

“It’s just a couple orders of magnitude,” Bott explained, “so something that we might be able to obtain within the next decade” as the technology improves.

Trappist 1

The planets around the star Trappist 1 have attracted a lot of interest since they were discovered beginning in 2015. There are seven planets in all orbiting this red dwarf star; they’re all roughly the size of Earth, and three of them orbit within the star’s habitable zone.

Trappist-1 system“These are planets that could be a lot like Earth, that could potentially support life,” said Dr. Rodrigo Luger, adding that this is an active area of research. Luger said it’s interesting that all seven planets are in orbital resonance.

“There’s a very distinct pattern linking the orbital periods of all seven planets,” he said. Interestingly enough, this resonance and the gravitational influence the planets have on each other makes the transit times of the planets change from orbit to orbit.

“It’s just like when you’re at the bus stop here in Seattle,” he explained. “Sometimes the bus comes early, sometimes it’s on time, sometimes it’s late. Transits are the same way.”

This gives astronomers a lot of information about the system.

“By studying the transit time variations you can actually get the mass of the planets because you know how strong their gravity is,” Luger said. “Because of the geometry of the system we can get the radius of the planets—the size when it transits the star—and by doing some clever numerology and math we can figure out their mass. If you have the radius and the mass you actually have the density, so you have an idea what these planets are made of.”

It turns out that the Trappist planets mostly appear to be of lower density than Earth and Venus. This could mean that the planets have large amounts of water or large hydrogen atmospheres.

“These planets are going to be studied a ton in the next decade to figure out if in fact they are habitable,” Luger said.

Astronomy on Tap Seattle co-founder Brett Morris noted that much future study of exoplanets was to have been done by the James Webb Space Telescope, but the recent decision to delay the launch of that instrument has been disappointing to many.

“That affected some people a lot,” Morris said. “Some of those people were me!”

When the announcement that the launch would be pushed out to 2020 was made last month, Morris and others were coming up on what was an April 6 deadline to propose observing targets for the Webb.

“We were all working really hard because this telescope is super cool and it’s going to be the one that’s going to tell us if these planets are actually habitable and what’s going on in their atmospheres,” Morris noted. “Then the rug got pulled out from under us.”

R-process is better than your process

Back in July Trevor Dorn-Wallenstein told the AoT crowd how the universe makes beer for us. Last month he explained how heavier elements are made, and how we now know that theory to be true.

Dorn-Wallenstein explained how elements are made within stars. Typically, when neutrons collide with protons, they are captured. Nature stabilizes this through a process known as beta decay; the neutron just turns into a proton. This causes the release of an electron and a neutrino, or maybe an anti-neutrino.

“The jury is still out on whether neutrinos are the same as anti-neutrinos,” Dorn-Wallenstein observed. In any case these particles just go away.

“What we’ve really done here is we’ve converted one of those neutrons into a proton, and in doing so we’ve made a whole new element,” Dorn-Wallenstein said. “We’ve gone from hydrogen to helium, though both are unstable and have oddball numbers of neutrons.”

This happens slowly—that’s why it’s called the s-process. It occurs in low-mass stars, which can make strontium, barium, and lead.

Then there’s the r-process, which is rapid. In this process neutrons get bombarded onto atomic nuclei so quickly that beta decay can’t happen, and you get ridiculously unstable nuclei. Eventually neutron capture either slows, or it becomes so unstable that beta decay happens all at once, and BAM, you’re making silver, gold, platinum, and other heavier elements.

Essentially to do this you need three big explosions. First you need two supernovae to leave behind a pair of neutron stars. Then the neutron stars need to merge. Their collision is called a kilonova.

“There’s a lot of free neutrons around, and maybe those free neutrons are created rapidly enough that the r-process occurs,” Dorn-Wallenstein said. To confirm this you’d need to see evidence of a neutron star collision, a gamma-ray burst from the event, and follow up to make sure r-process elements were actually being formed. That’s exactly what happened when LIGO detected gravitational waves from a neutron star merger back in August.

“We found evidence that r-process elements were being formed and it confirmed that neutron star mergers were the dominant sites of the r-process,” Dorn-Wallenstein concluded.

Exoplanet instruments

Back in August Lupita Tovar did a talk about LUVOIR and SAMURAI and how they will help us map exoplanets. Her latest interest is the Transiting Exoplanet Survey Satellite—TESS—which launched April 18. Its primary mission is to search for Earths and super-Earths. While Kepler looked at a relatively small swath of sky, TESS will scan about 80 percent of the sky and observe some 200,000 stars.

“You can imagine how many more things we’re going to be finding,” Tovar marveled. TESS will look at brighter stars than Kepler was able to observe, and will be a constant source of data. It will send back full-frame images every half hour or so, and about 200,000 smaller “postage stamp” images every two minutes.

“What that translates to is a whole lot of data that’s going to be coming down from this telescope,” Tovar said. “You’re going to get a lot of planets—planets everywhere!”

There could be as many as 20,000 new ones; Tovar said many will likely be gas giants, which are easier to spot.

SPAMS a lot

UW student Aislynn Wallach is involved in a project called The Search for Planets Around post-Main Sequence Stars—SPAMSS.

The question is what becomes of planets like Earth when their host stars become red giants.

“They blow up to a larger size, much like a marshmallow in a microwave,” Wallach said. After that the stars become white dwarfs. The prospects for the close-in planets aren’t good.

“Anything inside (the expanded red giant) will probably be disintegrated,” Wallach noted. “That’s what we’re looking for we’re trying to find—these broken up planets around stars like the Sun.”

The approach is to look at the spectra of white dwarf stars. If we spot heavier elements in those spectra, the elements will have come from ripped-up planets. If those materials were part of the star, they would sink quickly from its surface.

For her search Wallach has been using the ARCSAT (Astrophysical Research Consortium Small Aperture Telescope) at the Apache Point observatory in New Mexico. Results of her search so far: nothing.

“Nothing is still a result!” She laughs. The search continues.

The beautiful music of the universe

An interesting new approach to data is to turn it into sound. Locke Patton is doing this with the brightness of supernovae. Brighter data points are assigned higher musical pitches. The process is called sonification.

“We don’t just look at it, we listen to it,” said Patton of the data.

Sadly, his recording of a supernova sound didn’t play—a rare technical glitch at Astronomy on Tap Seattle. He sang it. Sort of! You can hear a recording here.

###

Please support Seattle Astronomy with a subscription through Patreon.

Become a Patron!

 

Share

Making beer and weighing stars

Science these days is often all about interdisciplinary work. It’s seldom just biology or just geology, and so it wasn’t surprising that the most recent gathering of Astronomy on Tap Seattle had a heavy dose of chemistry. It was for a good cause, though, as Trevor Dorn-Wallenstein, a second-year graduate student in the University of Washington Astronomy Department, gave a talk titled “An Unbeerlievable Tale” explaining how the universe made us beer, and a glass to put it into. The event happened July 26 at Peddler Brewing Company in Ballard.

It turns out you only need five elements for beer:

  • hydrogen
  • nitrogen
  • carbon
  • oxygen
  • phosphorous
Trevor Dorn-Wallenstein

Trevor Dorn-Wallenstein talks about celestial beermaking at Astronomy on Tap Seattle July 26, 2017 at Peddler Brewing Company in Ballard. (Photo: Greg Scheiderer)

We had the hydrogen about a millionth of a second after the Big Bang.

“It’s not until 10 seconds after the big bang that we can smoosh a proton and a neutron together and have deuterium and have that deuterium last,” Dorn-Wallenstein said. “Once we have that deuterium though, we’re off to the races.”

If you add a proton to the deuterium you make helium 3, or add a neutron and make tritium. Add the missing nucleon to either and you’ve got helium 4. It’s not in beer, but we’ll need it later. Much later. We have to wait about 1.5 million years, until stars start to form and start fusing new elements. Stars about two times the mass of our Sun can fuse hydrogen into helium, then toward the end of their life cylcles do what Dorn-Wallenstein called the “triple alpha reaction.” They smash three helium atoms into carbon, and add another helium nucleus to make oxygen. When the star reaches its red giant phase these elements blow off with the stellar wind.

“We’ve pollulted the interstellar medium with hydrogen, with carbon, with oxygen,” Dorn-Wallenstein said, “three of the things we need to make beer.”

Higher-mass stars, say ten times the mass of the Sun, can fuse things such as neon, titanium, silicon, sulfur, magnesium, aluminum, and calcium.

“It can unlock all of these additional stages of nuclear fusion,” Dorn-Wallenstein said.

Nickel beer night

The process leaves behind a stellar core of nickel 56 which decays into iron 56.

“Iron 56 is the end of the line for a star,” Dorn-Wallenstein explained. “There is no physical way to get energy out of an iron 56 nucleus. You cant fuse it with something else, you can’t fission it and turn it into two more things, you get nothing out of this nucleus. That’s a problem for a star.”

The outer part of the star collapses onto the core and explodes into supernova, blasting all of the elements it has made out into the interstellar medium.

“The environment around this supernova explosion is so energetic that you can make pretty much anything you want,” Dorn-Wallenstein said. “Pick any element in the periodic table that’s heavier than iron—it’s probably made in a supernova.”

Nitrogen is conspicuously missing from the list, and it is kind of hard to make. Dorn-Wallenstein said we get a little bit, but not enough, from supernovae or at the end of a smaller star’s life.

“The only way to produce enough nitrogen is via this thing called the carbon-nitrogen-oxygen, or CNO, cycle,” he said, explaining that this is how stars produce helium from hydrogen. Since nitrogen takes longer, it builds up in stars. In the universe at large there are about four or five carbon atoms for every nitrogen atom, but in a star that’s doing the CNO cycle there are more than a hundred times more nitrogen atoms than carbon.

“Via this process of converting hydrogen into helium, we actually make nitrogen as a by-product,” Dorn-Wallenstein said.

The beer glass

We’ve got the ingredients for beer. Where do we put it?

“It turns out the most complicated thing that goes into a beer is the glass itself,” Dorn-Wallenstein said, noting that your mug is mostly silicon dioxide, with a bit of sodium oxide, aluminum oxide, calcium oxide, and trace amounts of potassium, magnesium, iron, titanium, and sulfur. All of that stuff came out of a supernovae.

We have all we need for beer. Now we just need a planet to form, simple life forms like yeast to emerge, wheat and hops to grow, and someone to mix it all into a barrel and let it sit for a while.

“Look at that; we’ve made beer,” Dorn-Wallenstein concluded.

Weighing stars

The second talk of the evening at Astronomy on Tap Seattle was given by Dr. Meredith Rawls, who spoke about “Weighing Stars with Starquakes.” Rawls employs asteroseismology—your word of the day!—to figure out the mass of stars.

Rawls

Dr. Meredith Rawls discussed a new method for determining the masses of stars at Astronomy on Tap Seattle. (Photo: Greg Scheiderer)

Rawls noted that one way to calculate the mass of a star is to observe binary systems. We can measure the blockage of light as the stars orbit each other, and the Doppler shift that occurs when they do. Combine those two measurements and you get a reliable measure of the stars’ masses.

The drawbacks, according to Rawls, are that not all stars are part of binary systems, and that this method is slow and uses a lot of limited telescope time. Rawls gets around this by using asteroseismology, measuring the oscillations, or starquakes, that occur in a star’s interior. They actually ring like a bell, though you can’t hear it because space is a vacuum, and the frequency is too low in any case. Like a bell, the more massive the star, the lower the frequency of the oscillation. You can’t see the oscillations because they’re inside the star, but they change the star’s brightness. This is something that can be observed, and astronomers chart brightness changes against the frequencies of the starquakes and see how they line up with other properties of the star.

“You fit a bunch of curves to a bunch of wiggles and you try to convince yourself you’re not making it up,” Rawls quipped. The method can give clues about a star’s surface gravity, density, and temperature, and with gravity and density you can calculate mass.

Does it really work?

Rawls said they like to study red giant stars for a couple of reasons: that’s the eventual state of our Sun, and red giants brighter and easier to see. After figuring masses of many red giants with asteroseismology, they went back and calculated them again using the binary method. Then they compared the two.

“Oh, crap!” was Rawls’s reaction upon seeing how they matched up. “It’s not one-to-one. I broke science!”

In fact, the masses calculated through asteroseismology differed from those returned by the binary method by about 16 percent, on average. It turns out that big, red giant stars are not quite so simply just huge versions of our Sun.

“They have their own weird convection stuff going on,” Rawls explained. “There’s different stuff happening in different layers of the star that isn’t quite the same as what happens inside our Sun, and it’s just complicated enough that you can’t compare them one to one, even though it would be super handy if you could.”

What do they do to reconcile the differences between the two methods?

“We have to apply empirical corrections in order to get accurate masses,” Rawls explained. In other words, “We have to fudge it a little bit! But it’s consistent. It’s fine, it’s fine. Totally works. Not a problem. Don’t worry about it,” she laughed, adding that asteroseismology works just great for smaller stars like the Sun.

“It’s actually really useful, even though sometimes it doesn’t always work perfectly, because you can measure a lot of stars’ masses really fast,” she concluded.

Astronomy on Tap Seattle is organized by graduate students in astronomy from the University of Washington.


Some photos from recent Astronomy on Tap gatherings, and videos of the July talks:

Share

Astronomy on Tap plus Nordgren eclipse talk highlight week’s events

Another episode of Astronomy on Tap Seattle is on the calendar for this week, and astronomer, artist, and author Tyler Nordgren will visit the Museum of Flight to talk about his latest book about total solar eclipses.

The whole premise of Astronomy on Tap is that astronomy is even better with beer. This month we go even one step further, learning how beer isn’t possible without science as we go “From Stars to Beer.” The gathering will be at 8 p.m. Wednesday, July 26 at Peddler Brewing Company in Ballard.

AoT co-host Trevor Dorn-Wallenstein will give a talk titled, “An Unbeerlievable Tale: How atoms come together in stars to make the most glorious structure in the low-redshift universe: beer.” That may be the longest subtitle ever, too! Dr. Meredith Rawls will discuss her research about “Weighing Stars with Starquakes” with a fantastic technique called asteroseismology.

Astronomy on Tap Seattle is organized by graduate students in astronomy at the University of Washington. It’s free, but buy beer. Bring your own chair to create premium front-row seating in Peddler’s outdoor beer garden.

Nordgren on Eclipses

We’ve covered a number of talks by Tyler Nordgren over the last several years. Nordgren, astronomy professor at the University of Redlands, is also an author, artist, dark-sky advocate, and entertaining presenter. He’ll be at the Museum of Flight at 2 p.m. Saturday, July 29 to talk about his latest book, Sun Moon Earth: The History of Solar Eclipses (Basic Books, 2016).

The book is part travelogue covering some of Nordgren’s recent eclipse-chasing adventures, part history of eclipses and the myths and science surrounding them, and part primer for the total solar eclipse that will be visible from the United States next month. It’s a marvelous volume and we recommend it highly.

Nordgren spoke about the book at Town Hall Seattle back in January. You can read our re-cap of that talk and our review of the book. Nordgren will sign copies of Sun Moon Earth following his talk Saturday. Grab the book by clicking the book cover or link above; it helps Seattle Astronomy exist!

Star parties galore

The Seattle Astronomical Society will be involved in three star parties this weekend. The Covington Community Park star party will be held at 10 p.m. Friday, July 28 in said park. Volunteers from the Boeing and Tacoma societies also help out with this event.

SAS will hold its free monthly public star parties at 9 p.m. Saturday, July 29 at two locations: Green Lake in Seattle and Paramount Park in Shoreline. Bad weather cancels these star parties, so watch the SAS website or social media for updates. But hey, we’re on a good-weather roll!

Jazz Under the Stars

Jazz Under the StarsThe Tacoma Astronomical Society and Pacific Lutheran University physics department will lead stargazing at PLU’s Keck Observatory on Thursday, July 27 following the PLU Jazz Under the Stars concert. The artist for the free concert, which begins at 7 p.m. in the outdoor amphitheater of the Mary Baker Russell Music Center at PLU, is Anjali Natarajan, a Brazilian jazz vocalist out of Olympia. If the weather is bad the stargazing may be off, but the concert will just move indoors.

Jazz Under the Stars concerts will also be held on the next two Thursdays, August 3 and 10.


 

Share